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A closed-form solution for the forced response of an orthotropic thick plate and sandwich
panel has been developed and is presented in this paper. The paper outlines the methodology
and develops the formulation to enable the solution to be derived. A novel truss-core
sandwich panel is introduced and a method is outlined in which the panel is represented as
an equivalent homogeneous orthotropic thick plate continuum. The 3-D dynamic "nite
element method is one of the most versatile developments of the 20th century. However, the
software is not as accessible or as user-friendly for engineers who are not trained in such
analytical tools. Therefore, alternative methods of analysis must be found, especially in the
dynamic assessment of thin-walled truss-core sandwich panels. One way is to transform the
sandwich structure into an equivalent homogeneous orthotropic thick plate continuum and
to conduct the analysis on the equivalent model. The authors have derived the necessary
elastic constants to hasten this transformation. In this paper, the derived elastic constants
are used with closed-form solution to determine the bending and forced vibration response
of a clamped truss-core sandwich panel, represented as a homogeneous orthotropic thick
plate continuum. The Rayleigh}Ritz method is employed for the closed-form solution and
the forced response is determined using Duhamel's integral. Admissible functions are taken
as a series of products of beam mode-shape functions in the two orthogonal directions. The
beam function in either direction is derived from the corresponding beam eigenvalue
problem. Numerical examples, which include the in#uence of transverse shear on the
response, show that the closed-form solution agrees with analytical and numerical data
available in the literature and also with 3-D "nite element results.

( 2001 Academic Press
1. INTRODUCTION

Structural sandwich panels are favored over other structural forms because they provide
better sti!ness and strength per unit weight. Plantema [1] has written about the topic and
Libove and Hubka [2] and Fung et al. [3, 4] have thoroughly researched the various core
con"gurations to highlight the bene"ts of such structural forms. A number of these
thin-walled sandwich panels may be seen in Figure 1. Such sandwich panels have relatively
high transverse shear deformation in one or both planes of bending, a result due almost
0022-460X/01/310063#16 $35.00/0 ( 2001 Academic Press



Figure 1. Thin-walled sandwich panels.

Figure 2. (a) Truss-core sandwich panel and (b) dimensions of a panel unit.
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entirely to the characteristics of the core. This is not surprising because di!erent core shapes
and arrangements provide responses that vary signi"cantly from one another.

Recent experience indicates that there is considerable di$culty in producing the panels
shown in Figure 1 with an acceptable surface "nish. The reliability of the connection is also
questionable because proper attachment between the thin materials, either by fusion of the
materials or by screws/rivets, cannot be guaranteed. The truss-core sandwich panel
proposed by Lok and Cheng [5] and shown in Figure 2(a) has merit because each unit is
a structural element. A number of these units may be positioned side-by-side and welded at
the #anges to form a large sandwich panel. To reduce the number of joints, a wide section
comprising a number of units could be extruded in one operation. Instead of welding, an
additional thin sheet could be glued to the top and bottom faces of these units to form
a rigid panel. Figure 2(b) shows the cross-section dimensions of a truss-core unit; the
geometry of the section is completely described by these dimensions.

A 3-D thin-walled sandwich panel may be represented as an equivalent 2-D thick plate,
which is continuous and homogeneous, and orthotropic with respect to the mutually
perpendicular x and y directions. The authors have derived the necessary elastic constants
for the truss-core sandwich panel, which is represented by bending, twisting and transverse
sti!nesses and the Poisson ratio of a continuum. These constants are obtained by



Figure 3. Transformation of a truss-core unit to a homogeneous, orthotropic thick plate continuum.
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comparing the behavior of a unit thin-walled sandwich panel with that of an element of the
thick plate, with all its attendant material properties, as shown in Figure 3. By
incorporating the derived elastic constants and employing the Rayleigh}Ritz method,
closed-form solutions were developed for bending [6] and free vibration analysis [7] of the
truss-core sandwich panel.

In a previous article [7], several techniques and their corresponding merit in estimating
the free response of thin and thick orthotropic plates and sandwich panels were highlighted.
Laura and Duran [8] used simple polynomial approximations and Galerkin's method to
determine the response of thin, rectangular clamped plates subjected to sinusoidal
excitation. Di$culties encountered by a number of investigators prompted Ramkumar
et al. [9] and Chen and Ramkumar [10] to develop the Lagrangian multiplier technique for
the dynamic analysis of thick plates including the e!ects of transverse shear. However, one
of the disadvantages of their solution is that when the number of the Lagrangian multiplier
is smaller than the number of vibration modes to be computed, the mode shape functions
may not completely satisfy the boundary conditions. Further, the solution gives zero
bending moment on the edges of the clamped plate.

In this paper, a bending and forced vibration analysis is developed to assess the response
of fully clamped orthotropic plates. The technique is presented in detail, together with
a brief description of free vibration analysis by the mode superposition method. Several
numerical examples are provided to verify the proposed method.

2. THEORETICAL DEVELOPMENT

2.1. GOVERNING DIFFERENTIAL EQUATIONS

A general, small-de#ection theory developed by Libove and Batdorf [11] to describe the
#exural behavior of orthotropic plates and sandwich panels is extended for dynamic
analysis by including the mass and moment of inertia of the plate. The governing di!erential
equations of the problem are
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where g"1!l
x
l
y
; p"p (x, y, t) is the lateral dynamic load acting on the surface of the

plate; w is the displacement at a point in the plate in the z direction; h
x
and h

y
are rotations

of the normal of the plate with respect to the y- and x-axis respectively; o is the material
density and h is the thickness of the plate; J

x
and J

y
are moments of inertia per unit area of

the plate in the x and y directions respectively; and t denotes time. Equation (1) implies
a "rst order shear deformation theory; the transverse shear strain is constant across the
thickness of the plate.

The bending moments, twisting moment and shear forces (see Figure 3) in their respective
axes and planes may be calculated from
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2.2. BOUNDARY CONDITION

The Rayleight}Ritz method dictates that only the displacement boundary conditions on
the restrained edges are considered. For a fully clamped plate shown in Figure 4, the
boundary conditions may be written as

x"0, a: w"0, h
x
"0, h

y
"0, (3a)

y"0, b: w"0, h
x
"0, h

y
"0. (3b)

In Figure 4, point C is the center of the plate, and points A and B are the mid-length
positions of the edges at x"0 and y"0 respectively.

2.3. ENERGY EXPRESSIONS

The total strain energy ;, the potential energy < of the external load and the kinetic
energy ¹ of the plate are respectively
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Figure 4. Rectangular orthotropic plate.
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where the integration is over the domain X of the plate in the x}y plane.

2.4. ELASTIC CONSTANTS

For a conventional orthotropic plate, the elastic constants in equation (1) are
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where E
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and E
y

are the elastic moduli, G
xy

, G
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and G
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are the shear moduli, h is the
thickness and l

xy
and l

yx
are the Poisson ratios. The parameter k

s
is the transverse shear

correction factor and is usually taken as 5
6

or n2/12.
If we consider an isotropic plate with bending sti!ness D"Eh3/12(1!l2), then

equations (5a) and (5b) are reduced to
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In the analysis of symmetrical composite laminates [12], the #exural properties are
usually represented by six parameters; namely, bending and twisting sti!nesses, D

11
, D

22
,

D
66

and D
12

, and shear sti!nesses A
55

and A
44

. These parameters can be converted to the
required elastic constants in Libove and Batdorf 's theory by utilizing the following
relationship:
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In this way, the method can be used to analyze composite laminates. Comparisons can
then be made to validate the present approach.

2.5. LAGRANGIAN MULTIPLIER TECHNIQUE

Chandrashekhara et al. [13] adopted the Lagrangian multiplier technique for the
bending analysis of cross-ply clamped laminates while Ramkumar et al. [9] and Chen and
Ramkumar [10] used it to predict the dynamic response of clamped orthotropic plates
including transverse shear. In these approaches, the displacements of the plate are assumed
as
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where the parameters c
mn

, a
mn

and b
mn

are unknown coe$cients and M and N are the
number of series items incorporated in the analysis.

It can be seen that the trigonometric functions in equations (8b) and (8c) satisfy the
boundary conditions of zero de#ection and zero tangential rotations of equation (3).
However, they do not satisfy the four boundary conditions of zero normal slopes at the four
edges given by the second condition of equation (3a) and the third condition of
equation (3b). To satisfy these boundary conditions, certain constraints related to the
coe$cients c

mn
, a

mn
and b

mn
must be imposed. For instance, the condition h

x
"0 at x"0

may be expressed, using equation (8b), as
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Obviously, equation (9) is satis"ed if the following restraint is imposed:
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Similarly, restraint conditions may be derived for the other three unsatis"ed boundary
conditions. These may be written as
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where R and S are the number of Lagrangian multipliers to be used in the solution.
Introducing the Lagrangian multipliers G
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The unknown multipliers G
0n

, G
an

, H
0m

and H
bm

and the unknown coe$cients c
mn

, a
mn

and b
mn

are determined from a solution procedure by applying the energy method.
De#ection and rotations of the plate are then computed from equation (8). Consequently,
by substituting these quantities into equation (2), the bending moments, twisting moment
and shearing forces are obtained. Trigonometric functions used in the method will always
yield zero bending moments at the edges of the plate.

Care should be exercised to ensure that the number of Lagrangian multipliers (R and S) is
equal to or smaller than M and N. Otherwise, additional constraints are implied and the
accuracy of the solution is jeopardized. This may be closely examined by comparing
equations (9) and (10a). These equations show that the condition of zero normal slope can
be satis"ed completely when R and S are equal to M and N respectively. If R and S are
smaller than M and N, reasonable accuracy can be obtained because the lower-mode
functions are more signi"cant on the solution than the higher-mode functions. In the
present investigation, R and S are set to M and N respectively.

3. DYNAMIC RESPONSE

3.1. NATURAL FREQUENCIES AND MODE SHAPE FUNCTIONS

A closed-form solution of natural frequencies of clamped thick plates has been presented
[7]. The (m, n) order natural frequencies of the plate may be denoted as u(r)

mn
(r"1}3).

The lowest frequency (r"1) is the #exural mode while the two higher frequencies (r"2, 3)
are related to transverse shear deformations in the x and y directions respectively.
Once the natural frequencies are known, the corresponding vibration modes may be
readily computed. The (m, n, r) order vibration mode shape functions may be written
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as
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clamped beams in the x and y directions respectively [7]. The mode shape factors a(r)
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When the plate is vibrating freely with the (m, n, r) order frequency u(r)
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, its motion may be
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where A denotes the vibration amplitude constant and u
0

is the phase angle.
Substituting equation (13) into equation (1) and letting p"0, the following free vibration

equations are derived:
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3.2. FREE VIBRATION ANALYSIS

Free vibration response of an orthotropic thick plate may be computed with initial
displacement and rotations w
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where the factors m(r)
mn

and g(r)
mn

determine the vibration amplitude and phase angle due to the
contribution of the (m, n, r) order mode shape. These are the unknown factors of the
problem. The derivation of the two factors can easily be found in textbooks on structural
dynamics. The resulting expressions may be written as
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3.3. FORCED VIBRATION ANALYSIS

Consider the orthotropic plate subjected to dynamic loading p"p(x, y, t). By the modal
superposition method, the forced vibration of the plate is expressed as
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where A(r)
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(t) is the unknown (m, n, r) order vibration function to be derived.
Substituting equation (17) into equation (1) and utilizing the relationship of equation (14),

the following expressions are obtained:
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where AG (r)
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(t) denotes the second order derivative of the vibration function A(r)
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(t).
In the same manner as before, multiply equation (18a) by=(s)
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By using Duhamel's integral, the solution of equation (19) is
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Equation (21a) represents the response within the interval of the applied loading function.
However, when the load function is zero, the response is given by
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By substituting equation (21) into (17), the forced vibration response is obtained.
Dynamic bending/twisting moments and shearing forces are then calculated from
equation (2).

4. FINITE ELEMENT ANALYSIS

A 3-D "nite element model is essential to accurately map the response of a 3-D
thin-walled sandwich panel. For this purpose, the MARC "nite element code [14] is used in
the investigation. Eight-node iso-parametric shell element with reduced integration (element
22 in MARC) is used to idealize the facing plates and core webs of the 3-D FE model. In the
element formulation, the e!ect of transverse shear deformation is taken into account by
assuming a parabolic distribution across the plate thickness.

5. NUMERICAL EXAMPLES

5.1. CONVERGENCE STUDY AND VERIFICATION

To study convergence of and to verify the proposed method, a composite laminate is
examined. A four-layered cross-ply [0/90/90/03] graphite/epoxy laminate studied by
Chandrashekhara et al. [13] has the following material properties: E
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) were computed from laminate theory and
then converted, using equation (7), to the necessary elastic constants required for the
present approach.

Two cases were investigated; one is a relatively thick laminate (a/h"10) and the other is
a thin laminate (a/h"100). Both laminates were subjected to uniform load p. Table 1 shows
the progressive convergence of the solution for central de#ection and bending moment of
a square (a"b) composite laminate with increasing values of M and N using the present
approach and the Lagrangian multiplier technique (LMT). Both methods approach the
"nal solution after a number of cycles and the "nal results are in good agreement. However,
the proposed solution converges more rapidly using fewer items in the series function. For
the beam-function series, de#ection accuracy is achieved at M"N"9 while the
Lagrangian multiplier technique requires M"N"60. In computing the bending moment
at the center of the plate, the Lagrangian multiplier technique requires a much higher order
of e!ort for the same degree of accuracy compared with the proposed approach.

It is observed that the convergence trend between the two methods is di!erent. The
present method uses a series of functions in which each function completely satis"es the
boundary conditions. The functions of higher modes represent higher sti!ness. Therefore,



TABLE 1

Convergence of central de-ection and bending moment of a uniformly loaded laminate

TABLE 2

Central de-ection and bending moment of uniformly loaded laminates with various b/a ratios

103w
max

E
22

h3

pa4

102M
xC

pa2

b/a a/h"10 a/h"100 a/h"10 a/h"100

Present LMT [13] Present LMT [13] Present LMT Present LMT

1)0 5)247 5)168 2)343 2)276 3)563 3)514 4)169 4)159
1)2 6)014 5)928 2)510 2)437 4)111 4)079 4)450 4)452
1)4 6)375 6)289 2)532 2)459 4)361 4)346 4)469 4)480
1)6 6)490 6)405 2)498 2)426 4)432 4)432 4)393 4)409
1)8 6)479 6)395 2)454 2)383 4)413 4)423 4)304 4)324
2)0 6)417 6)332 2)420 2)349 4)360 4)376 4)238 4)258
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ignoring higher modes (small M and N values) makes the solution more #exible. The
Lagrangian multiplier technique is in contrast to the above approach. The conditions
imposed by the Lagrangian multiplier are excessively constrained. For instance, taking
M"N"1 simply gives a zero-deformation result (see equation (10)). When more modes of
displacement function are included, the e!ect of over-constraining is relaxed and the result
approaches the actual solution.

Solutions for rectangular laminates have also been obtained. Table 2 summarizes the
computed central de#ection and bending moment for rectangular thick and thin laminates,
using the proposed approach and the Lagrangian multiplier technique. The results are in
excellent agreement for all b/a ratios. Only the de#ection data is available from



TABLE 3

De-ection and bending moments of square isotropic plate under uniform load

a/h Solutions
103w

max
D

pa4

102M
xC

pa2
!

102M
xA

pa2

Present 2)147 2)41 4)43
5 LMT 2)140 2)39 *

FEM [15] 2)054 2)43 4)54
Present 1)495 2)49 4)54

10 LMT 1)471 2)36 *

FEM [15] 1)470 2)40 4)75
Present 1)270 2)47 4)49

100 LMT 1)233 2)33 *

FEM [15] 1)250 2)37 4)24
Thin-plate [16] 1)260 2)31 5)13
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Chandrashekhara et al. [13]. All the computed bending moments were derived from the
proposed approach and LMT described in this paper. A program based on the LMT has
been written to compute the values shown in Table 2.

In Table 2, it is observed that the di!erence in central de#ection between the present
method and LMT is always larger than the di!erence in bending moment. This is due to
the two di!erent convergence patterns of de#ection and bending moment by LMT
(see Table 1). De#ection converges smoothly while the bending moment converges
erratically.

To further verify the computed central bending moment and its accuracy using the
proposed method, the response of a number of square isotropic plates has been calculated.
The computed maximum de#ection and bending moment at the center and at mid-length of
one edge (points C and A of Figure 4 respectively) are listed in Table 3. The numerical
values of de#ection and bending moments in Table 3, for the LMT method are computed
using the program written by the authors. These results are compared with data from
a triangular "nite element formulation [15]. Solutions from a classical plate theory [16] are
available for one case only (a/h"100). It can be seen that the present method for de#ection
and bending moments is in excellent agreement with LMT and FEM values. As mentioned
previously, the LMT yields zero bending moments at the edges of the clamped plate.

5.2. RESPONSE OF COMPOSITE LAMINATE TO IMPACT LOADING

Kant et al. [17] examined the dynamic response of a clamped three-layered (0/90/03)
square composite laminate of length 140 mm and thickness 4)29 mm. The material
properties of the lamina are E

11
"40 GPa, E

22
"8)27 GPa, G

12
"G

23
"4)13 psi,

G
23
"0)03 GPa, l

12
"0)25 and density o"1901)5 kg/m3. A load, produced by a small,

cylindrical, blunt-ended projectile of diameter 9)525 mm, impinges on the center of the
laminate; this load is assumed to be distributed uniformly over a circular contact area
9)525 mm in diameter. Figure 5 shows the pressure}time relationship of the loading.

The dynamic response at the center of the laminate, calculated by the proposed
closed-form solution with various values of M]N, is plotted in Figure 6. The proposed
method agrees very well with "nite element result obtained by Kant et al. [17]. The present



Figure 5. Applied pressure}time relationship*after Kant et al. [17].

Figure 6. Central de#ection response of a clamped square three-layered laminate: ==, M"N"15;
d** , M"N"9; 222#] #] , M"N"3; - - - - -, Kant et al. [17].
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series solution gives a lower period of vibration compared with the "nite element result.
This is because a "rst order shear deformation model [11] is used in this paper whereas
a higher order theory is used in the "nite element formulation [17]. In the "rst order shear
theory, a constant shear strain distribution through the thickness is assumed. This
assumption makes the model sti!er than the higher order model.

5.3. DYNAMIC RESPONSE OF A TRUSS-CORE SANDWICH PANEL

The above exercises have shown conclusively that the proposed method is accurate in
predicting the response of isotropic and orthotropic plates. Therefore, the dynamic response
of a thin-walled truss-core sandwich panel, which is represented as an equivalent
homogeneous orthotropic thick plate, can be calculated with con"dence. Consider an
aluminium truss-core sandwich unit with the following dimensions and properties:
p"75 mm, f"25)91 mm, d"46)6 mm, t

f
"3)4 mm, t

c
"2)97 mm, E"70 GPa, l"0)3,

and material density o
0
"2700 kg/m3.



Figure 7. Three-dimensional FE model for a quarter truss-core panel.

TABLE 4

First peak central de-ection of truss-core sandwich panel

Closed-form solution (M"N"9) 3-D FEM analysis
Dt
(ms) 1 mode 10 modes 20 modes 20 modes 40 modes 80 modes

0)2 1)9867 1)5793 1)5792 1)5521 1)5987 1)6036
0)02 1)9960 1)5882 1)5841 1)5639 1)6065 1)6127
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Let a sandwich panel have length a"0)79 m (x direction) and width b"1)9 m (y
direction). This panel size represents a household door commonly used to resist the e!ects
of air-blast. The width implies that this panel is constructed with thirteen short truss-core
sandwich units positioned side-by-side. Using the formulas in reference [5], the seven elastic
constants for the truss-core panel are calculated as D

x
"279)55 kNm, D

y
"260)19 kNm,

D
xy
"198)78 kN m, D

Qx
"43426 kN/m, D

Qy
"753)41 kN/m, l

x
"0)3 kNm and

l
y
"0)2792 kNm.
Consider the panel subjected to a step-load function (p"150 kPa for t*0) uniformly

applied on the top surface of the panel. The dynamic response may be obtained by 3-D "nite
element analysis using the MARC code [14]. Due to the symmetry of boundary condition
and loading, only a quarter of the panel was modeled using 385 shell elements. Figure 7
shows the "nite element mesh. The vertical arrows represent the clamped supports and the
horizontal arrows denote symmetrical conditions. In the "nite element computation, the
mode superposition method is applied using 20, 40 and 80 modes respectively. The
fundamental frequency calculated by closed-form solution is 521)67 Hz.

Forced dynamic response was determined using the present series solution taking
M"N"9. Three calculations were undertaken in which 1, 10, 20 modes, respectively,
were involved in the mode superposition method. In both the analytical and "nite element
analyses, the time step was set at Dt"0)2 ms. This is approximately one-tenth the
fundamental period. To examine the e!ect of the time step, re"ned computations were
conducted by setting Dt"0)2 ms.

Table 4 summarizes the "rst peak central de#ection of the panel using the two time steps.
In both time-step cases, the closed-form solution converges rapidly by involving only the



Figure 8. Dynamic response of truss-core panel subjected to step load:==, closed-form 10 modes, Dt"0)2 ms;
}]}]}, closed-form 10 modes, Dt"0)02 ms; - - - - - -, FEM 40 modes, Dt"0)2 ms; } )} ) } ) } ) }, FEM 40 modes,
Dt"0)02 ms.
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"rst 10 modes. However, 40 modes were required in the "nite element method. Figure 8
shows the computed dynamic response of the panel. Regardless of the time step used in the
closed-form solution, a similar response is obtained. The "nite element analysis is more
sensitive to the time-step size. Although there is a slight shift in the FE response, the e!ect is
insigni"cant. In both cases, the peak values are similar.

6. CONCLUSIONS

Closed-form solution for the dynamic analysis of fully clamped orthotropic thick plate
and sandwich panel, including the in#uence of transverse shear, has been presented.
Bending and forced vibration of composite laminates and isotropic plates were calculated
and the results were compared with values derived from the Lagrangian multiplier
technique and "nite element method. The comparison validates the analytical approach
and the accuracy of the closed-form solution. Consequently, the closed-form approach was
used to estimate the forced response of a truss-core sandwich panel as an equivalent
orthotropic thick plate continuum. The dynamic response was compared with the 3-D "nite
element analysis of the sandwich panel. Good agreement of the results suggests that the
proposed method can be used to estimate the forced response of orthotropic plates,
laminates and sandwich panels in the absence of a 3-D "nite element tool.
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